66 research outputs found

    Distance coloring of the hexagonal lattice

    Get PDF
    Motivated by the frequency assignment problem we study the d-distant coloring of the vertices of an infinite plane hexagonal lattice H. Let d be a positive integer. A d-distant coloring of the lattice H is a coloring of the vertices of H such that each pair of vertices distance at most d apart have different colors. The d-distant chromatic number of H, denoted χd(H), is the minimum number of colors needed for a d-distant coloring of H. We give the exact value of χd(H) for any d odd and estimations for any d even

    Lightweight paths in graphs

    Get PDF
    Let k be a positive integer, G be a graph on V(G) containing a path on k vertices, and w be a weight function assigning each vertex v ∈ V(G) a real weight w(y). Upper bounds on the weight [formula] of P are presented, where P is chosen among all paths of G on k vertices with smallest weight

    An inequality concerning edges of minor weight in convex 3-polytopes

    Get PDF
    Let eije_{ij} be the number of edges in a convex 3-polytope joining the vertices of degree i with the vertices of degree j. We prove that for every convex 3-polytope there is 20e3,3+25e3,4+16e3,5+10e3,6+6[2/3]e3,7+5e3,8+2[1/2]e3,9+2e3,10+16[2/3]e4,4+11e4,5+5e4,6+1[2/3]e4,7+5[1/3]e5,5+2e5,612020e_{3,3} + 25e_{3,4} + 16e_{3,5} + 10e_{3,6} + 6[2/3]e_{3,7} + 5e_{3,8} + 2[1/2]e_{3,9} + 2e_{3,10} + 16[2/3]e_{4,4} + 11e_{4,5} + 5e_{4,6} + 1[2/3]e_{4,7} + 5[1/3]e_{5,5} + 2e_{5,6} ≥ 120; moreover, each coefficient is the best possible. This result brings a final answer to the conjecture raised by B. Grünbaum in 1973

    On Specific Factors in Graphs

    Get PDF
    It is well known that if G=(V,E) is a connected multigraph and X subset of V is a subset of even order, then G contains a spanning forest H such that each vertex from X has an odd degree in H and all the other vertices have an even degree in H. This spanning forest may have isolated vertices. If this is not allowed in H, then the situation is much more complicated. In this paper, we study this problem and generalize the concepts of even-factors and odd-factors in a unified form

    On long cycles through four prescribed vertices of a polyhedral graph

    Get PDF
    For a 3-connected planar graph G with circumference c ≥ 44 it is proved that G has a cycle of length at least [1/36]c+[20/3] through any four vertices of G

    On the Strong Parity Chromatic Number

    Get PDF
    International audienceA vertex colouring of a 2-connected plane graph G is a strong parity vertex colouring if for every face f and each colour c, the number of vertices incident with f coloured by c is either zero or odd. Czap et al. [Discrete Math. 311 (2011) 512-520] proved that every 2-connected plane graph has a proper strong parity vertex colouring with at most 118 colours. In this paper we improve this upper bound for some classes of plane graphs

    Total edge irregularity strength of complete graphs and complete bipartite graphs

    Get PDF
    AbstractA total edge irregular k-labelling ν of a graph G is a labelling of the vertices and edges of G with labels from the set {1,…,k} in such a way that for any two different edges e and f their weights φ(f) and φ(e) are distinct. Here, the weight of an edge g=uv is φ(g)=ν(g)+ν(u)+ν(v), i. e. the sum of the label of g and the labels of vertices u and v. The minimum k for which the graph G has an edge irregular total k-labelling is called the total edge irregularity strength of G.We have determined the exact value of the total edge irregularity strength of complete graphs and complete bipartite graphs
    corecore